An ESD protection circuit including a discharge device, a first detection circuit, and a second detection circuit. The discharge device provides a discharge path between a first power rail and a second power rail when the discharge device is activated. The discharge device stops providing the discharge path when the discharge device is de-activated. The first detection circuit is coupled between the first and the second power rails. The first detection circuit activates the discharge device when an ESD event occurs in the first power rail. The second detection circuit de-activates the discharge device when the ESD event does not occur in the first power rail.
FIG. 1
FIG. 3
FIG. 5
FIG. 6A
FIG. 6D
FIG. 7
POWER-RAIL ESD PROTECTION CIRCUIT
WITHOUT LOCK-ON FAILURE

BACKGROUND OF THE INVENTION

1. Field of the Invention
The invention relates to an integrated circuit, and more particularly to an integrated circuit comprising an electrostatic discharge (ESD) protection device without lock-on failure.

2. Description of the Related Art
With the advancement of semiconductor manufacturing, protection against electrostatic discharge (ESD) has become one of the most critical reliability issues for integrated circuits (IC). Several ESD test modes, such as machine mode (MM) or human body mode (HBM), have been proposed to imitate the circumstances under which ESD occurs. The ability to withstand certain levels of ESD is essential for successful commercialization of an IC.

ESD protection also is a critical reliability issue for integrated circuits (IC). As semiconductor processes advance toward deep sub-micron manufacturing, resulting scaled-down devices and thinner gate oxides are more vulnerable to ESD stress. Generally, the input/output pads on IC chips must sustain at least 2 kV ESD of high stress in HBM or 200V in MM. Thus, the input/output pads on IC chips usually include ESD protection devices or circuits protecting the core circuit from ESD damage.

BRIEF SUMMARY OF THE INVENTION
ESD protection circuits are provided. An exemplary embodiment of an ESD protection circuit comprises a discharge device, a first detection circuit, and a second detection circuit. The discharge device provides a discharge path between a first power rail and a second power rail when the discharge device is activated. The discharge device stops providing the discharge path when the discharge device is de-activated. The first detection circuit is coupled between the first and the second power rails. The first detection circuit activates the discharge device when an ESD event occurs in the first power rail. The second detection circuit de-activates the discharge device when the ESD event does not occur in the first power rail.

Integrated circuits are also provided. An exemplary embodiment of an integrated circuit comprises a core circuit and an ESD protection circuit. The core circuit is coupled between the first and the second power rails. The ESD protection circuit comprises a discharge device, a first detection circuit, and a second detection circuit. The discharge device provides a discharge path between a first power rail and a second power rail when the discharge device is activated. The discharge device stops providing the discharge path when the discharge device is de-activated. The first detection circuit is coupled between the first and the second power rails. The first detection circuit activates the discharge device when an ESD event occurs in the first power rail. The second detection circuit de-activates the discharge device when the ESD event does not occur in the first power rail.

A detailed description is given in the following embodiments with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS
The invention can be more fully understood by referring to the following detailed description and examples with references made to the accompanying drawings, wherein:

FIG. 1 is a schematic diagram of an exemplary embodiment of an integrated circuit;
FIG. 2 is a schematic diagram of an exemplary embodiment of an ESD protection circuit;
FIG. 3 is a schematic diagram of another exemplary embodiment of the ESD protection circuit;
FIG. 4 is a schematic diagram of another exemplary embodiment of the ESD protection circuit;
FIG. 5 is a schematic diagram of another exemplary embodiment of the ESD protection circuit;
FIG. 6A is a schematic diagram of an exemplary embodiment of the detection circuit shown in FIG. 2;
FIGS. 6B–6D are schematic diagrams of other exemplary embodiments of the detection circuit 121 shown in FIG. 2; and
FIG. 7 is a schematic diagram of another exemplary embodiment of the detection circuit 121 shown in FIG. 3.

DETAILED DESCRIPTION OF THE INVENTION
The following description is of the best-contemplated mode of carrying out the invention. This description is made for the purpose of illustrating the general principles of the invention and should not be taken in a limiting sense. The scope of the invention is best determined by reference to the appended claims.

FIG. 1 is a schematic diagram of an exemplary embodiment of an integrated circuit. The integrated circuit 100 comprises a core circuit 110 and an ESD protection circuit 120. The core circuit 110 and the ESD protection circuit 120 are coupled between power rails 131 and 132. When an ESD event occurs in the power rail 131 and the power rail 132 is grounded, the ESD protection circuit 120 dissipates ESD current to ground. Thus, the core circuit 110 is not affected by ESD current.

In normal mode (no ESD event), the ESD protection circuit 120 remains idle. At this time, the core circuit 110 operates according to voltage of the power rails 131 and 132. The core circuit 110 executes the corresponding functions according to the type of the integrated circuit 100. For example, if the integrated circuit 100 is an analog-to-digital converter, the core circuit 110 executes a transformation function to transform signals.

The ESD protection circuit 120 comprises detection circuits 121, 122, and a discharge device 123. The detection circuit 121 is coupled between the power rails 131 and 132. The detection circuit 121 activates the discharge device 123 when an ESD event occurs in the power rail 131. The detection circuit 122 de-activates the discharge device 123 when the ESD event does not occur in the power rail 131. When the discharge device 123 is activated, the discharge device 123 provides a discharge path between the power rails 131 and 132. When the discharge device 123 is de-activated, the discharge device 123 stops providing the discharge path.

FIG. 2 is a schematic diagram of an exemplary embodiment of an ESD protection circuit. In this embodiment, the discharge device 123 is an N-type transistor MND and the detection circuit 122 is an N-type transistor MNAD. For tolerating ESD current, the channel size of the N-type transistor MND is larger.

When an ESD event occurs in the power rail 131 and the power rail 132 is grounded, the detection circuit 121 provides a high level to the N-type transistor MND for activating the N-type transistor MNAD. Thus, the N-type transistor MND provides a discharge path such that ESD current is
dissipated to ground via the N-type transistor M_{ND}. When the ESD event does not occur in the power rail 131, the detection circuit 121 provides a high level to the N-type transistor M_{NR1}. Since the N-type transistor M_{NR1} is turned on, the N-type transistor M_{ND} is de-activated. Thus, the N-type transistor M_{ND} stops providing the discharge path such that a lock-on failure does not occur in the ESD protection circuit.

[0024] FIG. 3 is a schematic diagram of another exemplary embodiment of the ESD protection circuit. In this embodiment, the discharge device 123 is an N-type transistor M_{ND} and the detection circuit 122 comprises a P-type transistor M_{PD} and an inverter unit 310. When an ESD event occurs in the power rail 131 and the power rail 132 is grounded, the detection circuit 121 provides a low level to the inverter unit 310 for activating the N-type transistor M_{ND}. Thus, the N-type transistor M_{ND} provides a discharge path such that the ESD current is dissipated to ground via the N-type transistor M_{ND}.

[0025] When the ESD event does not occur in the power rail 131, the detection circuit 121 provides a low level to the P-type transistor M_{PR1}. Since the P-type transistor M_{PR1} is turned on, the input terminal of the inverter unit 310 is at a high level for de-activating the N-type transistor M_{ND}. Thus, the N-type transistor M_{ND} stops providing the discharge path such that the ESD current does not occur in the ESD protection circuit.

[0026] FIG. 4 is a schematic diagram of another exemplary embodiment of the ESD protection circuit. In this embodiment, the discharge device 123 is a P-type transistor M_{PD}, and the detection circuit 122 comprises a P-type transistor M_{PD}. When an ESD event occurs in the power rail 131 and the power rail 132 is grounded, the detection circuit 121 provides a low level to the P-type transistor M_{PD} for activating the P-type transistor M_{PD}. Thus, ESD current is dissipated to ground via the P-type transistor M_{PD}. When the ESD event does not occur in the power rail 131, the detection circuit 121 provides a low level to the P-type transistor M_{PR1}. Since the P-type transistor M_{PR1} is turned on, the P-type transistor M_{PD} is de-activated. Thus, the P-type transistor M_{PD} stops providing the discharge path.

[0027] FIG. 5 is a schematic diagram of another exemplary embodiment of the ESD protection circuit. In this embodiment, the discharge device 123 is a P-type transistor M_{PD} and the detection circuit 122 comprises an N-type transistor M_{NR2} and an inverter unit 510. When an ESD event occurs in the power rail 131 and the power rail 132 is grounded, the detection circuit 121 provides a high level to the inverter unit 510 for activating the P-type transistor M_{PD}. Thus, the P-type transistor M_{PD} provides a discharge path such that ESD current is dissipated to ground via the P-type transistor M_{PD}. When the ESD event does not occur in the power rail 131, the detection circuit 121 provides a high level to the N-type transistor M_{NR2}. Since the N-type transistor M_{NR2} is turned on, the input terminal of the inverter unit 510 is at a low level for de-activating the P-type transistor M_{PD}. Thus, the P-type transistor M_{PD} stops providing the discharge path.

[0028] FIG. 6A is a schematic diagram of an exemplary embodiment of the detection circuit 121 shown in FIG. 2. The detection circuit 121 comprises an impedance unit 610, a capacitor unit 620, and inverter units 630-650. The impedance unit 610 provides impedance. The capacitor unit 620 connects with the impedance unit 610 in parallel between the power rails 131 and 132. The capacitor unit 620 and the impedance unit 610 connect to a node 660. In this embodiment, the impedance unit 610 is a resistor 611 and the capacitor unit 620 is a capacitor 621. The impedance of the resistor 611 and the capacitance of the capacitor 621 determine a delay constant. The delay constant exceeds the duration of the ESD pulse and is less than the initial rising time of the power signal of the power rail 131.

[0029] When an ESD event occurs in the power rail 131 and the power rail 132 is grounded, since the delay constant exceeds the duration of the ESD pulse, the node 660 is at a low level. The discharge device 123 is activated by the inverter units 630-650. When the ESD event does not occur in the power rail 131, since the delay constant is less than the initial rising time of the power signal of the power rail 131, the node 660 is at a high level. When the N-type transistor M_{NR1} is turned on, the discharge device 123 is de-activated.

[0030] In this embodiment, since the channel size of the discharge device 123 is larger, the inverter units 630-650 are connected in series between the node 660 and the discharge device 123 for increasing the driving capability of the detection circuit 121. Thus, the detection circuit 121 is capable of activating the discharge device 123 in some embodiments; the number of the inverter units can be changed. Additionally, each inverter unit is composed by a P-type transistor and an N-type transistor. Since methods for composing the inverter unit are well known to those skilled in the field, descriptions of the methods are omitted for brevity.

[0031] FIG. 6B is a schematic diagram of another exemplary embodiment of the detection circuit 121 shown in FIG. 2. FIG. 6D is similar to FIG. 6A except for the addition of a P-type transistor M_{PPB}. In this embodiment, the P-type transistor M_{PPB} serves as a feedback path for avoiding the discharge device 123 activated in a fast boot state.

[0032] The channel size of the P-type transistor M_{PPB} may exceed the channel size of the transistor of the inverter unit. When an ESD event occurs in the power rail 131, although the node 660 is at a high level, the output terminal of the inverter unit 650 may be maintained at a high level. Thus, the inverter unit 650 would not de-activate the discharge device 123. However, the N-type transistor M_{NR1} can change the level of the output terminal of the inverter unit 650 from the high level to the low level. Thus, the discharge device 123 is de-activated. When the channel size of the N-type transistor M_{NR1} increases, the de-activated speed of the discharge device 123 does, as well.

[0033] FIG. 6C is a schematic diagram of another exemplary embodiment of the detection circuit 121 shown in FIG. 2. FIG. 6C is similar to FIG. 6A except for the addition of an inverter unit 670. The inverter units 650 and 670 compose a feedback unit for ensuring that the discharge device continuously provides a discharge path when an ESD event occurs in the power rail 131.

[0034] FIG. 6D is a schematic diagram of another exemplary embodiment of the detection circuit 121 shown in FIG. 2. The detection circuit 121 comprises an impedance unit 610, a capacitor unit 620, inverter units 630, 650, and transistors M_{PPB}, MP_{PPB}, and M_{CP}. If the transistor M_{PPB} is serially connected to the transistor M_{CP} between the power rails 131 and 132, an inverter unit is composed. In this embodiment, transistor M_{PPB} is serially connected to the transistor M_{PPB} between the power rails 131 and 132. The transistors M_{PPB} serves as a feedback path for ensuring that the discharge device continuously provides a discharge path when an ESD event occurs in the power rail 131.
an inverter unit comprising an input terminal coupled to the
drain of the P-type transistor and an output terminal
coupled to the gate of the first N-type transistor.
7. The ESD protection circuit as claimed in claim 2,
wherein the discharge device is a first P-type transistor
comprising a gate coupled to the first and the second detection
circuits, a source coupled to the first power rail, and a drain
coupled to the second power rail.
8. The ESD protection circuit as claimed in claim 7,
wherein the second detection circuit comprises a second
P-type transistor comprising a gate coupled to the first node,
a source coupled to the first power rail, and a drain coupled
to the gate of the first P-type transistor.
9. The ESD protection circuit as claimed in claim 7,
wherein the second detection circuit comprises:
an N-type transistor comprising a gate coupled to the first
node, a drain coupled to the first detection circuit and a
source coupled to the second power rail; and
an inverter unit comprising an input terminal coupled to the
drain of the N-type transistor and an output terminal
coupled to the gate of the first P-type transistor.
10. An integrated circuit, comprising:
a core circuit coupled between a first power rail and a
second power rail; and
an ESD protection circuit comprising:
a discharge device which provides a discharge path
between the first and the second power rails when
the discharge device is activated and stops providing the
discharge path when the discharge device is de-acti-
vated;
a first detection circuit coupled between the first and the
second power rail s, wherein the first detection circuit
activates the discharge device when an ESD event occurs
in the first power rail; and
a second detection circuit de-activated the discharge device
when the ESD event does not occur in the first power rail.
11. The integrated circuit as claimed in claim 10,
wherein the first detection circuit comprises:
an impedance unit providing an impedance; and
a capacitor unit connected to the impedance unit in parallel
between the first and the second power rails, wherein the
capacitor unit and the impedance unit connect to a first
node.
12. The integrated circuit as claimed in claim 11,
wherein the first detection circuit further comprises a feedback
unit coupled between the first node and the second
detection circuit.
13. The integrated circuit as claimed in claim 11,
wherein the discharge device is a first N-type transistor
comprising a gate coupled to the first and the second detection
circuits, a drain coupled to the first power rail, and a source
coupled to the second power rail.
14. The integrated circuit as claimed in claim 13,
wherein the second detection circuit comprises a second
N-type transistor comprising a gate coupled to the first node,
a drain coupled to the gate of the first N-type transistor, and a
source coupled to the second power rail.
15. The integrated circuit as claimed in claim 13,
wherein the second detection circuit comprises:
a P-type transistor comprising a gate coupled to the first node, a source coupled to the first power rail, and a drain coupled to the first detection circuit; and an inverter unit comprising an input terminal coupled to the drain of the P-type transistor and an output terminal coupled to the gate of the first N-type transistor.

16. The integrated circuit as claimed in claim 11, wherein the discharge device is a first P-type transistor comprising a gate coupled to the first and the second detection circuits, a source coupled to the first power rail, and a drain coupled to the second power rail.

17. The integrated circuit as claimed in claim 16, wherein the second detection circuit comprises a second P-type transistor comprising a gate coupled to the first node, a source coupled to the first power rail, and a drain coupled to the gate of the first P-type transistor.

18. The integrated circuit as claimed in claim 16, wherein the second detection circuit comprises:

an N-type transistor comprising a gate coupled to the first node, a drain coupled to the first detection circuit and a source coupled to the second power rail; and

an inverter unit comprising an input terminal coupled to the drain of the N-type transistor and an output terminal coupled to the gate of the first P-type transistor.

* * * * *