Logarithmic temperature dependence of Hall transport in granular metals

Yu-Jie Zhang,1 Zhi-Qing Li,1,† and Ju-Hong Lin2,†

1Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin 300072, China
2Institute of Physics and Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan

(Received 22 May 2011; revised manuscript received 13 July 2011; published 12 August 2011)

We have measured the Hall coefficient \(R_H\) and the electrical conductivity \(\sigma\) of a series of ultrathin indium-tin-oxide films between 2 and 300 K. A robust \(R_H \propto \ln T\) law is observed in a considerably wide temperature range of 2 and \(\sim 120\) K. This \(\ln T\) dependence is explained as originating from the electron-electron interaction effect in the presence of granularity as theoretically predicted. Furthermore, we observed a \(\sigma \propto \ln T\) law from 3 K up to several tens K, which also arose from the Coulomb interaction effect in inhomogeneous systems. These results provide strong experimental support for the current theoretical concepts for charge transport in granular metals with intergrain tunneling conductivity \(g_T \gg 1\).

Granular metals are composite materials in which the metallic granules are randomly embedded in an insulating matrix. Recently, the electronic conduction properties of granular metals have attracted much renewed theoretical1–4 and experimental5–9 attention due to the improved nanoscale feature and rich fundamental phenomena in the presence of structural inhomogeneities. In particular, the intragrain electron dynamics is found to play a crucial role in the Hall transport,1 which has often been overlooked in the everlasting studies of granular systems. Previously, great effort has long been focused on the intergrain electron behavior, which governs the longitudinal electrical conductivity \(\sigma\).2,3,10 In practice, an experimental detection of a many-body correction to \(\sigma\) is straightforward, while a measurement of a small correction to the Hall coefficient \(R_H\) in a metallic system would be a challenging task.

A granular metal refers to a granular conductor with the dimensionless intergrain tunneling conductivity \(g_T = G_T/(2e^2/h) \gg 1\), where \(G_T\) is the intergrain tunneling conductance, \(e\) is the electronic charge, and \(h\) is the Planck constant. Recently, Efetov, Beloborodov, and co-workers have carried out a series of theoretical investigations in this regime. They found that the Coulomb electron-electron (e-e) interaction effect governs the carrier transport characteristics in the presence of granularity. Kharitonov and Efetov predicted that, in the wide temperature interval of \(g_T \delta \lesssim k_B T \lesssim E_0\), \(R_H\) should obey

\[
R_H = \frac{1}{n^*e} \left[1 + \frac{c_d}{4\pi g_T} \ln \left(\frac{E_0}{k_B T} \right) \right], \tag{1}
\]

where \(n^*\) is the effective carrier concentration, \(c_d\) is a numerical lattice factor, \(\delta\) is the mean-energy level spacing in the grain, \(E_0\) is the charging energy, \(E_0 = \min(g_T E_c, E_{Th})\), and \(E_{Th}\) is the Thouless energy.

In addition, Efetov and Tschersich2 and Beloborodov et al.3 predicted that the intergrain e-e interaction effect would cause a longitudinal electrical conductivity,

\[
\sigma = \sigma_0 \left[1 - \frac{1}{2\pi g_T d} \ln \left(\frac{g_T E_c}{k_B T} \right) \right], \tag{2}
\]

in the temperature interval \(g_T \delta < k_B T < E_c\), where \(\sigma_0 = G_T a^{2-d}\) is the tunneling conductivity between neighboring grains in the absence of Coulomb interaction, \(a\) is the radius of the grain, and \(d\) is the dimensionality of the granular array.

Thus far, the theoretical prediction of Eq. (1) has not been experimentally tested. The main reason is that the \(n^*\) value is usually very high \((\sim 10^{28} - 10^{29} \text{m}^{-3})\) in those granular conductors made of normal-metal grains, which leads to minute \(R_H\) magnitudes. Furthermore, the logarithmic correction term in Eq. (1) is predicted to be \(\lesssim 10\%\) of the total \(R_H\) magnitude. Thus, an experimental test of this theoretical \(R_H \propto \ln T\) law is nontrivial.

Recently, it was established that the indium-tin-oxide (ITO) material possesses free-carrier-like electronic properties.11–14 Their resistivities could be made as low as \(\rho(300\text{K}) \sim 100–200 \mu \Omega \text{cm}.14–16\) Therefore, one may consider growing ultrathin \((\sim 10\text{ nm})\) ITO films to form granular arrays while achieving the prerequisite condition \(g_T \gg 1\). Furthermore, since the \(n^*\) magnitudes in metallic ITO materials are \(~ 2\) to \(~ 3\) orders of magnitude lower than those in typical metals,14 one could expect relatively large values of \(R_H\). That is, the theoretical predication of Eq. (1), together with that of Eq. (2), may be tested by using granular ITO films. In this Brief Report, we show the experimental observation of the \(R_H \propto \ln T\) law, as well as the \(\sigma \propto \ln T\) law, in a series of ultrathin ITO films, which lie deep in the metallic regime.

Our ultrathin ITO films were deposited on glass substrates by the standard rf sputtering method. A commercial Sn-doped \(\text{In}_2\text{O}_3\) target (99.999% purity, the atomic ratio of Sn to In being 1:9) was used as the sputtering source. The base pressure of the vacuum chamber was \(\lesssim 8 \times 10^{-5}\) Pa, and the sputtering deposition was carried out in an argon atmosphere (99.999%) of 0.6 Pa. During the depositing process, the mean-film thickness \(t\), together with the substrate temperature \(T_s\), was varied to tune the grain size \(a\) and the intergrain conductivity \(g_T\) in each film. Hall-bar-shaped samples (1.5-mm wide and 1-cm long) were defined by using mechanical masks [see
the schematic in the inset of Fig. 3(a). The thicknesses of
the films were measured by the low-angle x-ray diffraction
(X’pertPRO multipurpose diffractometer). The surface mor-
phologies of the films were characterized by the scanning
electron microscopy [SEM, Hitachi S-4800]. The four-probe
electrical conductivity and Hall effect measurements were
carried out on a physical property measurement system
(PPMS-6000, Quantum Design). For R_{HI} measurements,
in order to cancel out any undesirable misalignment voltages,
and thermomagnetic effect, a square-wave current operating
at a frequency of 8.33 Hz was applied, and the magnetic field
was regulated to sweep from -2 to 2 T in a step of 0.05 T.

Figure 1 shows the low-angle x-ray diffraction patterns of
four representative films as indicated. The data for the films Numbers
1–4 are offset for clarity.

Figures 2(a) and 2(b) show the grain-size distribution
histograms for the films Numbers
1, 2, 3, and 4, with corresponding SEM images.

TABLE I. Sample parameters for six ultrathin ITO films. T_s is the substrate temperature during deposition, t is the mean-film thickness, a is the mean-grain radius determined from Fig. 2, and n^* is the measured effective carrier concentration. c_d and E_0 (σ_0 and g_T) are adjusting parameters in Eq. (1) [Eq. (2)]. δ is the calculated mean-energy level spacing. The theoretical Thouless energy is $E_{\text{Th}}^n = h D/\alpha^2$, the experimental charging energy is $E_c = 10k_B T^*$, and the theoretical charging energy is $E_c^n = e^2/(8\pi\epsilon_0\alpha)$. The standard deviations of a for films Numbers
1–4 (5 and 6) are $\approx 20\% (\approx 25\%)$. The uncertainties are $\approx 15\%$ in E_0 and T^*, a factor of ≈ 2 in δ, E_{Th}^n, and E_c^n, and $\lesssim 5\%$ in other parameters.

<table>
<thead>
<tr>
<th>Film</th>
<th>T_s (K)</th>
<th>t (nm)</th>
<th>a ((\mu \Omega \cdot cm))</th>
<th>n^* ((10^{22} m^{-3}))</th>
<th>E_0 ((10^{-21} J))</th>
<th>E_{Th}^n ((10^{-22} J))</th>
<th>T^* (K)</th>
<th>σ_0 ((10^5 S/m))</th>
<th>g_T</th>
<th>E_c ((10^{-21} J))</th>
<th>E_c^n ((10^{-21} J))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>610</td>
<td>9.7</td>
<td>24</td>
<td>333</td>
<td>1.1</td>
<td>85</td>
<td>0.72</td>
<td>1.3</td>
<td>3.8</td>
<td>1.5</td>
<td>46</td>
</tr>
<tr>
<td>2</td>
<td>630</td>
<td>9.2</td>
<td>28</td>
<td>302</td>
<td>1.0</td>
<td>73</td>
<td>0.72</td>
<td>1.3</td>
<td>2.6</td>
<td>1.3</td>
<td>48</td>
</tr>
<tr>
<td>3</td>
<td>650</td>
<td>11.3</td>
<td>34</td>
<td>259</td>
<td>1.1</td>
<td>100</td>
<td>1.1</td>
<td>2.0</td>
<td>1.7</td>
<td>1.0</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>670</td>
<td>13.4</td>
<td>38</td>
<td>226</td>
<td>1.2</td>
<td>120</td>
<td>1.0</td>
<td>2.1</td>
<td>1.2</td>
<td>0.9</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>650</td>
<td>7.6</td>
<td>24</td>
<td>501</td>
<td>0.73</td>
<td>50</td>
<td>0.70</td>
<td>0.99</td>
<td>5.1</td>
<td>1.2</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>650</td>
<td>5.4</td>
<td>22</td>
<td>839</td>
<td>0.58</td>
<td>25</td>
<td>1.0</td>
<td>0.66</td>
<td>9.4</td>
<td>1.4</td>
<td>62</td>
</tr>
</tbody>
</table>

FIG. 1. (Color online) Low-angle x-ray diffraction patterns for four ultrathin ITO films as indicated. The data for the films Numbers 2–4 are offset for clarity.

FIG. 2. (Color online) Grain-size distribution histograms for the ITO films (a) Number 1 and (b) Number 3. The insets show the corresponding SEM images.
Since ITO possesses a free-electron-like band structure,11,14 that the lower limit in activity with a logarithm of temperature for four ITO films measured are least-squares fits to Eq. (1). The inset in (a) depicts a schematic of temperature for four ITO films, as indicated. The solid straight lines \(\nu_{V} \) is the electronic density of states at the Fermi energy.4 We write that the film thickness, rather than the substrate temperature \(T_{s} \), plays a more dominant role in governing the variation in samples’ parameters. According to Kharitonov and Efetov,4 Eq. (1) is valid in the temperature range \(g_{T} \delta \lesssim k_{B} T \lesssim E_{0} \). (\(E_{0} = E_{Th} \) in this paper.) The mean-energy level spacing \(\delta \) in a single grain is given by \(\delta = \left(\nu V \right)^{-1} \), where \(V \) is the volume of the grain and \(\nu \) is the electronic density of states at the Fermi energy. Since ITO possesses a free-electron-like band structure,11,14 we write \(\nu = m^{*} k_{F} / (\pi \hbar)^{2} \), where the Fermi wave number is \(k_{F} = (3\pi^{2} n^{*})^{1/3} \) and the effective electron mass is \(m^{*} = 0.55 m_{e} \) (\(m_{e} \) is the free-electron mass).18 Our calculated values of \(\delta \) are listed in Table I. From Table I, one readily obtains that the lower limit in \(T_{s} \), for Eq. (1) to be applicable, is \(g_{T} \delta / k_{B} \sim 2 \) to 3 K in all samples. This is in good consistency with our experimental observation. Furthermore, our extracted \(T_{\text{max}} \) values satisfy the condition \(k_{B} T_{\text{max}} \lesssim E_{0} \). However, our experimental \(E_{0} \) values are approximately ten times greater than the theoretical values of the Thouless energy \(E_{\text{Th}} = \hbar D / a^{2} \),19 where \(D = \sigma / (\nu e^{2}) \) is the electron-diffusion constant. This underestimate of \(E_{\text{Th}} \) (par) can be explained. To accurately evaluate \(E_{\text{Th}} \) from \(D \), one should have used the intrinsic conductivity \(\sigma_{\text{grain}} \) of an individual ITO grain, instead of using the measured \(\sigma \) of the film. Therefore, the \(E_{\text{Th}} \) values listed in Table I only represent the lower bounds because \(\sigma_{\text{grain}} > \sigma \) in a granular array. The fact that our grains are disk shaped, but not spherical, could have introduced additional uncertainties in the estimate. In short, our measured in \(T \) behavior of \(R_{H} \) can be described satisfactorily by Eq. (1).

As mentioned, if the Coulomb interaction effect dominates the electron dynamics in granular ITO films, our measured \(\sigma(T) \) should follow the predications of Eq. (2) in the temperature interval \(g_{T} \delta < k_{B} T < E_{c} \). According to Efetov and Tschersich3 and Beloborodov et al.,3,20 the weak-localization (WL) effect, originally formulated for homogeneous systems,21,22 should be suppressed at \(T > g_{T} \delta / k_{B} \). Empirically, it has been found that the WL effect in thick ITO films could persist up to several tens K.18 In order to fully exclude any residual WL effect on \(\sigma \), we have measured \(\sigma(T) \) of our ultrathin ITO films in a perpendicular magnetic field \(B \) of 7 T.20 Our results for four representative films are plotted in Fig. 4. Our measured \(\sigma \) data are compared with Eq. (2), and the least-squares fitted results are plotted as the solid straight lines. Note that the prediction of Eq. (2) is valid in any \(B \) as long as \(\omega_{c} \tau < 1 \), where \(\omega_{c} \) is the cyclotron frequency and \(\tau \) is the electron mean-free time.3 In our fitting processes, \(\sigma_{0} \) and \(g_{T} \) are treated as adjusting parameters, and the charging energy is taken to be \(E_{c} \approx 10 k_{B} T^{*} \),8,5 where \(T^{*} \) is the temperature below which the \(\sigma \propto \ln T \) law holds (see Table I).23 The array dimensionality is \(d = 2 \) in this Brief Report since our ultrathin films are nominally covered with only one layer of ITO grains. Our fitted values of \(\sigma_{0} \) and \(g_{T} \) are listed in Table I. Figure 4 indicates that our experimental data between \(\sim 3 \) K and \(T^{*} \) are well described by Eq. (2). The values of \(E_{c} \approx 10 k_{B} T^{*} \) are comparable to the theoretical estimates \(E_{c}^{\text{th}} = e^{2} / (8\pi\epsilon_{0}\epsilon_{r} a^{2}) \) within experimental uncertainties, where \(\epsilon_{0} \) is the permittivity of vacuum. For films Numbers 1–4, our extracted \(g_{T} \) values are far greater than 1, while for film Number 6, \(g_{T} \approx 4.5 \). This latter value suggests that even the thinnest film Number 6 lies in the metallic region. Thus, Eqs. (1) and (2) are safely applicable for our films.

FIG. 4. (Color online) Variation in longitudinal electrical conductivity with a logarithm of temperature for four ITO films measured in a perpendicular magnetic field of 7 T. The solid straight lines are least-squares fits to Eq. (2).

FIG. 5. (Color online) Normalized sheet resistance \(\Delta R_{G}(T) / R_{G}(2 \text{ K}) \) as a function of a logarithm of temperature in a perpendicular magnetic field of 7 T for two ITO films as indicated. The solid straight lines are least-squares fits to the two-dimensional homogeneous \(e-e \) interaction theory.
It is well known that the \(e-e \) interaction effect also results in a small \(T \) correction to longitudinal conductivity (or resistivity) in two-dimensional systems at low \(T \).\(^{22}\) The correction to the sheet resistance \(R_{\square} \), due to the \(e-e \) interaction effect in a homogeneous weakly disordered film, is given by\(^{22,24}\)
\[
\Delta R_{\square}(T)/R_{\square}(T_0) = (\sigma^2/2\pi^2\hbar)(1 - g \tilde{T}/4) \ln(T/T_0),
\]
where \(g \) is a screening factor and \(T_0 \) is an arbitrary reference temperature. Figure 5 shows the normalized sheet resistance \(\Delta R_{\square}(T)/R_{\square}(2 \, \text{K}) = [R_{\square}(T) - R_{\square}(2 \, \text{K})]/R_{\square}(2 \, \text{K}) \) for films Numbers 2 and 4 measured in a perpendicular \(B \) of 7 T as a function of \(\ln T \). (The rest of the films behave in a similar manner.) The solid straight lines are the least-squares fits to this theory. Although an approximate \(\ln T \) regime seems to exist for \(T \) below \(\sim 35 \, \text{K} \), our fitted values of \(g \) are \(-0.61 \) and \(-0.35 \) for films Numbers 2 and 4, respectively. Since this \(e-e \) interaction theory requires that \(0 \lesssim \tilde{T} \lesssim 1 \),\(^{22}\) the seemingly good fits shown in Fig. 5, thus, are spurious. That is, our measured \(\sigma \propto \ln T \) law in ultrathin ITO films cannot be ascribed to the conventional \(e-e \) interaction effect in homogeneous systems.

In conclusion, we have studied the temperature dependences of the Hall coefficient and longitudinal conductivity in a series of ultrathin ITO films. The films were specifically made granular, while possessing overall metallic behavior. We observed the robust \(R_H \propto \ln T \) law, together with the \(\sigma \propto \ln T \) law, over nearly two decades of temperature below \(\sim 100 \, \text{K} \). Our results are fairly quantitatively understood within these recent theoretical frameworks of the electron-electron interaction effect in the presence of granularity. It is meditative that these theories, which are formulated based on a regular array of spheres, can be applied so successfully to explain real systems where distributions in grain size, shape, and intergrain distance exist.

This work was supported by the Key Project of Chinese MOE through Grant No. 109042 and Tianjin City NSF through Grant No. 10JCYBJC02400 (Z.Q.L.), and by the Taiwan NSC through Grant No. NSC 99-2120-M-009-001 and the MOE ATU Program (J.J.L.).

\(^{11}\)I. S. Beloborodov et al., Rev. Mod. Phys. 79, 469 (2007).

