Achieving low sub-0.6-nm EOT in gate-first n-MOSFET with TiLaO/CeO$_2$ gate stack

C.H. Chenga,*, K.I. Choub, Albert Chinb

aDepartment of Mechatronic Technology, National Taiwan Normal University, Taipei 106, Taiwan
bDepartment of Electronics Engineering, National Chiao Tung University, Hsinchu 300, Taiwan

ABSTRACT

We report a gate-first TiLaO/CeO$_2$ n-MOSFET with an equivalent oxide thickness (EOT) of only 0.56 nm and threshold voltage (V_t) of 0.31 V. This small EOT MOSFET was achieved by employing high-κ CeO$_2$ interfacial layer with high bond enthalpy (795 kJ/mol) to replace low-κ SiO$_2$ with close bond enthalpy (800 kJ/mol). The cerium silicate can aggressively scale EOT down to sub-0.6-nm EOT region without increasing gate leakage, which is urgently needed for 16 nm technology node.

1. Introduction

Recently, a major challenge for metal-gate/high-κ CMOS [1–13] is to trade off equivalent oxide thickness (EOT) and flat-band voltage (V_{fb}) roll-off at a CMOS-compatible gate first process, since the large V_{fb} roll-off [7,8] at smaller equivalent oxide thickness (EOT) is undesirable, which can result in an unwanted high threshold voltage (V_t). Previously, we have shown that the V_{fb} roll-off and the high V_t are related to charged-oxygen vacancies in the non-stoichiometric oxides (HfO$_2$-x and SiO$_x$) [7,8]. The vacancy-rich interfacial layer not only leads to V_{fb} roll-off and high V_t, but also largely increase gate leakage current at a sub-nm EOT region. Although an ultra-thin SiO$_2$ layer can be used as interface layer between high-κ dielectric and Si to reach a 1 nm EOT [9] in the 45 nm node technology, this may not work as the gate-stack technology is highly scaled down to sub-0.6-nm EOT for 16 nm technology node. To solve these issues, we proposed a stacked gate dielectric using higher-κ TiLaO [14] and large-bandgap cerium oxide (CeO_2) interface layer with bond enthalpy (795 kJ/mol) close to that of the SiO$_2$ (800 kJ/mol) [3] for aggressive EOT scaling. Since the TiO$_2$-based dielectrics in direct contact with Si substrate always accompany common shortcoming of poor interface quality, the robust cerium-based silicate to improve the interface thermal stability become more urgent.

In this paper, TiLaO/CeO$_2$ n-MOSFET using silicate interface modification to obtain a small 0.56 nm EOT and a low V_t of 0.31 V have been demonstrated. The n-MOSFET with highly scaled EOT can be attributed to the combined results of an increased capacitance density using higher-κ TiLaO gate dielectric, low gate leakage and robust cerium-based silicate interface.

2. Experimental procedure

Standard p-type Si wafers were used in this study. The simple, self-aligned, gate-first TaN/TiLaO/CeO$_2$ n-MOSFETs were made by depositing TiO$_2$-doped La$_2$O$_3$ (~25% TiO concentration) on Si substrate using electron beam (e-beam) evaporation, followed by a post-deposition anneal (PDA) of 400 °C. The low-temperature physical-vapor deposition [3–8,13,14] have less interface reaction compared to sputtering with plasma damage or high-temperature chemical-vapor deposition. The adding TiO$_2$ in TiLaO increases the dielectric constant (κ value), which allows using a thicker layer to decrease the gate leakage without scarring gate capacitance density to reach small EOT. Then 150-nm-thick TaN were subsequently deposited on these gate stacks and RTA annealed at 550–900 °C to form the MOS capacitors. For comparison, the same MOS process was also used to fabricate other TaN/TiLaO/Al$_2$O$_3$/p-Si n-MOS capacitors. After patterning, self-aligned As$^+$ implantation with an acceleration voltage of 25 KeV and a dosage of 5×10^{15} cm$^{-2}$ for source-drain doping was applied and activated at 900 °C RTA. After etching non-reacted metal, Al contact metal was added on source-drain to form the n-MOSFETs with 10-μm (100-μm size. The

* Corresponding author.
E-mail address: chcheng@ntnu.edu.tw (C.H. Cheng).
interface reaction was investigated by Transmission Electron microscopy (TEM). The fabricated n-MOSFETs were characterized by capacitance–voltage (C–V) and current–voltage (J–V) measurements. The EOT extractions of experimental C–V curves were well fitted by CVC simulators.

3. Results and discussion

Fig. 1a and b shows the C–V and J–V curves of TaN/TiLaO n-MOS devices at various RTA temperatures. High capacitance density of 3.3 µF/cm², leakage current of \(6.7 \times 10^{-2}\ A/cm^2\) at \(-1\ V\) and proper \(V_{fb}\) of \(-0.6\ V\) are obtained after 800 °C RTA. This gives an EOT of 0.72 nm by CVC Quantum-Mechanical C–V simulation. The large negative \(V_{fb}\) with thickness dependence is unique property of La₂O₃ dielectric [6]. Both the increased capacitance density for a reduced EOT and negative \(V_{fb}\) shift are observed with increasing thermal budget from 400 °C PDA to 800 °C RTA. It is demonstrated that the gate dielectric was densified but thicker interfacial layer were also formed after 800 °C RTA. The TEM images of MOS sample with 800 °C RTA was inserted in Fig. 1a, where the 1.2-nm-thick interfacial layer was clearly observed. Such interfacial layer formation is unavoidable because of the strong bond enthalpy of Si–O (800 kJ/mol) close to La–O (799 kJ/mol) but higher than Ti–O (672 kJ/mol) [3]. Furthermore, the titanium-based silicate interface with higher interface states is unstable. The severe \(V_{fb}\) roll-off to positive bias direction and degraded capacitance density were found when increasing RTA temperature up to 900 °C (not shown here).

To prevent from \(V_{fb}\) roll-off and unstable interface formation at a gate first process, the high-k CeO₂ was used to improve interface thermal stability of higher-\(k\) TiLaO dielectric. Fig. 2a and b shows the C–V and J–V curves of TiLaO/CeO₂ n-MOS devices with different RTA conditions. The capacitance density of 2.3 µF/cm² and gate leakage current of \(1.1 \times 10^{-2}\ A/cm^2\) at \(-1\ V\) were measured at a low 550 °C RTA. However, a very high capacitance density of 4.2 µF/cm² and low leakage current of \(1.2\ A/cm^2\) at \(-1\ V\) were further reached after a high thermal budget of 900 °C. The high-density gate capacitance provides a small EOT of 0.56 nm, which can be used for 16 nm technology node with 10 nm gate length according to ITRS. As shown in TEM image of Fig. 2c, a cerium–silicate (checked by EDX) with sharp interface was found within the 3.6-nm-thick TiLaO/CeO₂ gate dielectric stack, giving a high-\(k\) value of 25. Thus, the well-behaved C–V curves and the increased capacitance density by 82% from 500 °C to 900 °C RTA explain that

![Fig. 1.](image1.png)
Fig. 1. (a) C–V and (b) J–V characteristics of TiLaO n-MOS capacitors with 400 °C PDA and 800 °C RTA. The inset figure is cross-sectional TEM picture of TiLaO n-MOS capacitors after 800 °C RTA.

![Fig. 2.](image2.png)
Fig. 2. (a) C–V, (b) J–V characteristics and (c) cross-sectional TEM picture of TiLaO/CeO₂ n-MOS capacitors.
the observed interfacial layer is robust cerium silicate rather than low-κ defective SiO2.

From the viewpoint of EOT scaling, the Al2O3 dielectric with large bandgap and good thermal stability is suitable as buffered layer to resist the formation of defective interfacial layer. Thus, we also fabricated a TiLaO/Al2O3 n-MOS device as a control sample for comparison. Fig. 3a and b shows the C–V and J–V curves of TaN/TiLaO/[CeO2 or Al2O3] n-MOS capacitors after 900 °C RTA. Compared to TiLaO/CeO2 n-MOS, TiLaO/Al2O3 one has a lower capacitance density of 3.5 µF/cm2 and larger 0.73-nm EOT, which cannot meet the requirement of sub-0.6-nm EOT at 16 nm technology node. The negative Vfb (−0.4 V) with slightly positive shift is believed to be related to the intrinsic dipole effect near Al-based interfacial layer that it is favorable for Vt tuning in p-MOSFET.

Fig. 4a and b shows the Id–Vd and Id–Vg characteristics of TiLaO/CeO2 n-MOSFETs. In addition to output transistor characteristics, the low Vt of 0.31 V was measured at this 0.56-nm-EOT transistor. Fig. 5a shows the effective mobility extracted by split CV measurement based on linear Id–Vg characteristic in TiLaO/CeO2 n-MOSFETs. The universal mobility of conventional MOSFET was plotted for comparison. A mobility of 126 cm2/V s at 0.8 MV/cm was obtained in TiLaO/CeO2 n-MOSFET with a 0.56 nm EOT. It has been clarified that such low Vt and EOT can be attributed to the unique negative Vfb of La2O3 in bulk TiLaO and robust cerium silicate interface with high bond enthalpy. However, the device mobility is significantly smaller than the TiN/HfO2 n-MOSFET with a 1 nm EOT [11]. The mobility degradation at small sub-0.6-nm EOT is unavoidable due to charged vacancies in the dielectric or related remote phonon scattering. Although the interface state is high at this small-EOT MOSFET with gate first process, further improvement on mobility can be expected by inserting an ultrathin oxide or low-temperature junction formation by solid-phase diffusion [13]. Besides, the gate leakage at 1 V above Vfb for TiLaO/CeO2 n-MOSFET still can maintain >3 orders of magnitude lower
than that of benchmark SiO₂ while EOT scaling from 1 nm to 0.56 nm, as shown in Fig. 5b.

4. Conclusions

We report a gate-first n-MOSFET with a low EOT of 0.56 nm using gate stack of TiLaO/CeO₂. The robust cerium silicate interfacial layer was used to prevent from additional EOT increase at a gate-first process, which enabled aggressive EOT scaling down to <0.6 nm target of 16 nm technology node. Thus, this self-aligned and gate-first n-MOSFET with a highly scaled EOT is compatible with CMOS process.

References