Deformation mechanisms in ultrahigh-strength and high-ductility nanostructured FeMnAlC alloy

Chih-Lung Lin, Chuen-Guang Chao, Jenh-Yih Juang, Jenn-Ming Yang, Tzeng-Feng Liu

Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan

Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan

Department of Materials Science and Engineering, University of California, Los Angeles, CA, USA

Abstract

The deformation mechanisms of a bulk nanostructured Fe–30Mn–9.5Al–2.0C (in wt.%) alloy were investigated. After aging at 450 °C for 9–12 h, the alloy exhibits an exceptional strength-ductility combination (e.g. yield strength ~1406 MPa with elongation ~32%). The aged alloy exhibits a novel microstructure with isolated austenite nano-channels bounded by an extremely high volume fraction of directional nano-sized (Fe,Mn)3AlC carbides (\(\gamma_0\)-carbides). The plastic deformation was found to be dominated by bursting dislocation nucleation within the isolated austenite nano-channels.

1. Introduction

Lightweight Fe–Mn–Al–C alloys with excellent combination of strength and ductility are promising candidate for automobile structural applications [1]. The microstructural evolution and mechanical properties of fully austenitic Fe–Mn–Al–C alloys have been extensively studied. Previous results showed that the as-quenched microstructure of Fe–(28–30.5)Mn–(7.8–10)Al–(0.8–1.3)C (in wt.%) alloys was single-phase austenite (\(\gamma\)) [2–5]. After being optimally aged (550 °C, 15–16 h), a high density of nano-sized (Fe,Mn)\(_3\)AlC carbides (\(\gamma_0\)-carbides) having an ordered L1\(_2\) structure started to precipitate coherently within the \(\gamma\) matrix and no precipitates were formed on the grain boundaries. The resulting microstructure led to a very good combination of strength and ductility with an elongation (El) better than about 30%, values of 1120–1259 MPa for ultimate tensile stress (UTS) and 1080–1094 MPa for yield strength (YS) could be attained [2,3]. The strengthening mechanisms to account for the excellent strength-ductility combination were attributed to the precipitation of shearable nano-sized \(\gamma_0\)-carbides and the substructures associated with planar glide (such as Taylor lattice, Taylor lattice domain boundaries and microbands) [4,5].

Recently, we observed an interesting microstructural feature in the as-quenched Fe–Mn–Al–C alloys with higher carbon content: an extremely high density of nano-sized \(\gamma_0\)-carbides was formed within the \(\gamma\) matrix by spinodal decomposition during quenching [6–9]. The amount of nano-sized \(\gamma_0\)-carbides increased with increasing carbon content [9]. The unique \(\gamma_0\)-carbides formation mechanism is quite different from that occurred in the Fe–Mn–Al–C (C \(\leq 1.3\)) alloys, wherein the nano-sized \(\gamma_0\)-carbides could only be observed in the aged alloys [2–5]. Due to the pre-existing nano-sized \(\gamma_0\)-carbides in the as-quenched alloys, both the aging temperature and aging time required for attaining the optimal combination of strength and ductility could be dramatically reduced. Furthermore, after being properly aged, the alloys have far superior combination of strength and ductility to that of the Fe–Mn–Al–C (C \(\leq 1.3\)) alloys. For example, with almost equivalent elongation, the Fe–28Mn–9Al–1.8C alloy aged at 450 °C for 12 h could possess 28% higher YS than that of the optimally aged Fe–Mn–Al–C (C \(\leq 1.3\)) alloys [6]. However, the prevailing mechanisms leading to such exceptional combination of strength and ductility in the higher-carbon Fe–Mn–Al–C alloys remain to be clarified. In this study, we present a detailed analysis to unveil the unique microstructural features and strengthening mechanisms prevailing in the aged Fe–30Mn–9.5Al–2.0C alloy.
2. Experimental procedure

The nanostructured Fe–30Mn–9.5Al–2C alloy investigated in this study was prepared in an air induction furnace. After being homogenized at 1150 °C for 2 h under protective argon atmosphere, the ingot was hot-rolled to 6.5 mm-thick plate. The plate was subsequently solution heat-treated (SHT) at 1100 °C for 1 h and then quenched into room-temperature water. Aging processes were performed at 450 °C for 9–12 h. The specimens for tensile tests were prepared according to ASTM E8 standard having a gauge length of 50 mm, a gauge width of 12.5 mm and a thickness of 6 mm. Tensile tests were carried out at room-temperature with an Instron 8501 tensile testing machine at a strain rate of 6.7×10^{-4} s$^{-1}$. The YS was measured at 0.2% offset strain. The microstructures were analyzed by a JEOL-2100 transmission electron microscope (TEM) operating at 200 kV. A LECO2000 image analyzer was used to determine the size and volume fraction of the γ-carbides.

3. Results and discussion

Fig. 1a is TEM (100)$_\gamma$ dark-field image and the corresponding diffraction pattern (hkl: γ-phase, hkl: κ-carbide) of the as-quenched alloy. (b) The engineering stress-strain curves for the alloy in the as-quenched condition and after being aged at 450 °C for 9 h and 12 h, respectively. (c) TEM bright-field image of the as-quenched alloy after tensile test, showing the presence of long slip lines.

2. Experimental procedure

The nanostructured Fe–30Mn–9.5Al–2C alloy investigated in this study was prepared in an air induction furnace. After being homogenized at 1150 °C for 2 h under protective argon atmosphere, the ingot was hot-rolled to 6.5 mm-thick plate. The plate was subsequently solution heat-treated (SHT) at 1100 °C for 1 h and then quenched into room-temperature water. Aging processes were performed at 450 °C for 9–12 h. The specimens for tensile tests were prepared according to ASTM E8 standard having a gauge length of 50 mm, a gauge width of 12.5 mm and a thickness of 6 mm. Tensile tests were carried out at room-temperature with an Instron 8501 tensile testing machine at a strain rate of 6.7×10^{-4} s$^{-1}$. The YS was measured at 0.2% offset strain. The microstructures were analyzed by a JEOL-2100 transmission electron microscope (TEM) operating at 200 kV. A LECO2000 image analyzer was used to determine the size and volume fraction of the κ-carbides.

Fig. 1. (a) TEM (100)$_\gamma$ dark-field image and the corresponding diffraction pattern (hkl: γ-phase, hkl: κ-carbide) of the as-quenched alloy. (b) The engineering stress-strain curves for the alloy in the as-quenched condition and after being aged at 450 °C for 9 h and 12 h, respectively. (c) TEM bright-field image of the as-quenched alloy after tensile test, showing the presence of long slip lines.

3. Results and discussion

Fig. 1a is TEM (100)$_\gamma$ dark-field image and the corresponding diffraction pattern of the as-quenched alloy, showing that an extremely high density of nano-sized κ-carbides was formed within the γ matrix by spinodal decomposition during quenching [6–9]. The average size and volume fraction of the κ-carbides in the as-quenched alloy are about 10 nm and 40%, respectively. Fig. 1b shows the tensile stress-strain curves of the as-quenched and aged alloys. The UTS, YS, and El of the as-quenched alloy are 1150 MPa, 950 MPa, and 53%, respectively. Fig. 1c shows the TEM observation of the as-quenched alloy after tensile test. It is evident that, since the size of the κ-carbides is too tiny to completely obstruct dislocation gliding, long slip lines can be observed within the γ matrix. Consequently, in the as-quenched state, the deformation is dominated by the conventional dislocation impediment strengthening mechanisms.

The engineering stress–strain curves shown in Fig. 1b evidently indicate that, after being aged at 450 °C for 9 h and 12 h, the YS increases drastically up to 1406 MPa and 1452 MPa, while the total El are maintained at 32.1% and 26.3%, respectively. The results clearly demonstrate that, after being properly aged, the alloy can have far superior combination of strength and ductility to that of the Fe–Mn–Al–C ($C \leq 1.3$) alloys [2–5]. It’s worthwhile to note that the yield strength and tensile strength are also slightly higher than those of the Fe–28Mn–9Al–1.8C alloy reported earlier by Chang et al. [6]. More significantly, a YS/UTS ratio of 94% is obtained. The striking features of possessing the exceptional combination of strength and ductility, as well as diminishingly small work
Our case here, the fact that the width of the isolated nano-channels and might have been prevailing in the present aged alloys. In stress is limited by dislocation nucleation. This is quite different suppression due to the drastically reduced sample size and the flow mechanism, the dislocation multiplication activities are largely increased areal coverage of the j-phase nano-channels as shown in Fig. 2a. Moreover, these dislocations are all oriented normal to the surface [19]. Moreover, as the nucleation threshold is reached, the bursting dislocations within the isolated γ-phase nano-channels glide along the individual channel and interact with dislocations from adjacent γ-phase nano-channels at some of the channel intersections. This is evidently exhibited from the nano-sized slip traces and heavily strained intersection regions, as indicated by red arrows in Fig. 3a and b, respectively. This also explains why only very limited work hardening rate is observed for the aged alloys as shown in Fig. 1b. Moreover, it is also noted that when the dislocation does glide through the shearable nano-sized κ'-carbides, it tends to split the κ'-carbides into even smaller size and form even narrower isolated γ-phase nano-channels due to the increased size and volume fraction of nano-sized κ'-carbides with increasing aging time. Nevertheless, it is noted that the strengthening mechanism observed in the present aged alloy is quite different from the six conventional strengthening mechanisms including solid solution strengthening, grain boundary strengthening, working hardening, precipitation or dispersion hardening, transformation strengthening and nano-twins [10,11].

Fig. 3a and b shows the TEM bright-field and (100) dark-field images of the alloy aged at 450 °C for 9 h after tensile test, respectively. The bright-field image clearly reveals that no long slip lines could be observed and a very high density of dislocations homogeneously distributed within the γ-phase nano-channels as shown in Fig. 3a. Moreover, these dislocations are all oriented normal to the γ/κ'-carbide interfaces, as indicated by red arrows. The fact that the dislocations, instead of aligning along the orientations defined by the slip systems of the face-centered-cubic austenitic lattice, are running in the shortest distance within the γ-phase nano-channels, suggesting that these dislocations are newly nucleated through a bursting manner to effectively accommodate the plastic strain. From the energy considerations it would be expected that, in addition to minimum length of dislocation lines, the image stresses from the interface always tend to rotate the dislocation lines until they are normal to the surface [19]. Moreover, as the nucleation threshold is reached, the bursting dislocations within the isolated γ-phase nano-channels glide along the individual channel and interact with dislocations from adjacent γ-phase nano-channels at some of the channel intersections. This is evidently exhibited from the nano-sized slip traces and heavily strained intersection regions, as indicated by red and green arrows in Fig. 3a and b, respectively. This also explains why only very limited work hardening rate is observed for the aged alloys as shown in Fig. 1b. Moreover, it is also noted that when the dislocation does glide through the shearable nano-sized κ'-carbides, it tends to split the κ'-carbides into even smaller size and form even narrower isolated γ-phase nano-channels, as indicated by the red arrows in Fig. 3b. An in-depth computational dislocation dynamics analysis is required to fully assess the dislocation behavior in the confined nano-channels.
It is also worth mentioning that the Taylor dislocation lattice could be observed at the γ/κ-carbide interface in the present aged alloy as shown in the high-resolution TEM image (Fig. 3c). Obviously, these dislocations are distributed in a pair-wise manner (as marked by the dislocation symbols in Fig. 3c), which is one of the most prominent features of the Taylor dislocation lattice [20]. In such configuration, the stored energy is lowered by mutual screening and, hence, the maximum number of dislocations can be formed to homogeneously accommodate the strain up to a maximum level. To the best of our knowledge, Fig. 3c probably is the first direct evidence disclosing the very feature of Taylor lattice since it was proposed decades ago [20].

Finally, the mechanical properties obtained from the present work and the results obtained from our previous studies of Fe–Mn–Al–C alloys with higher carbon content and several other commercially available steels are summarized in Fig. 4a and b. Fig. 4 is a historical epitome summarizing the development of steels used in automotive industry over the past 50 years and the results obtained from the our current and previous work, respectively. The full name of acronyms appearing in the figure are interstitial-free (IF), bake hardenable (BH), carbon–manganese (C–Mn), high-strength low-alloy (HSLA), dual-phase (DP), complex-phase (CP), transformation-induced plasticity (TRIP), and martensite (MART), respectively.

Although can have YS ~ 1200 MPa, their El has reduced to only 4%–6% [21]. A desire to produce steels with significantly higher ductility has led to the development of the second generation AHSS (2GAHSS) by adding 16–31 wt.% of Mn to obtain a fully austenitic (γ) microstructure at room-temperature. The representative examples of the 2GAHSS are the so-called twinning-induced plasticity (TWIP) Fe–Mn–Al–Si or Fe–Mn–C steels [22–25]. Although the TWIP steels can possess both excellent El (>50%) and high UTS (800–1100 MPa), they usually have relatively lower YS (~500 MPa) [21–25]. To bridge the gap of strength–elongation balance, the Steel Market Development Institute had put forth a “current area of research” for developing the third generation AHSS (3GAHSS) which is highlighted as the yellow area in Fig. 4b [11]. Evidently, the yield strength–ductility and tensile strength–ductility combinations of the present alloys, are superior to those of the 3GAHSS.

4. Conclusions

The deformation mechanisms of an ultrahigh-strength and high-ductility nanostructured Fe–30Mn–9.5Al–2.0C alloy have been investigated. Owing to the unique microstructure of isolated γ-phase nano-channels bounded by large volume fraction of highly directional κ-carbides, the local plastic deformation in the aged alloy becomes dominated by bursting dislocation nucleation within the nano-channels. Such strengthening mechanism is completely different from the conventional ones and has never been observed in other bulk metallic materials. Consequently, the present aged alloy simultaneously exhibits an exceptional combination of ultrahigh yield strength and excellent high ductility. Direct evidence of the Taylor dislocation lattice at the γ/κ-carbide interfaces is also revealed, perhaps for the first time, in high-resolution TEM lattice image.

Acknowledgements

This work was supported by National Science Council, Republic of China under Grant NSC100-2221-E-009-053-MY3. JYJ is partially supported by MOE-ATU program operated at NCTU.

References

